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Introduction
Lattice-based cryptography

I Lattice-based crypto is assumed to be post-quantum secure.
I Based on well known lattice problems such as the shortest vector problem

(SVP).
I To boost efficiency special lattices such as ideal lattices are used.
I Ideal lattices correspond to fractional ideals in algebraic number fields.
I Some schemes (e.g., [SV10] and [GGH13]) use principal ideals with short

generators.
I To break those schemes, one needs to solve the short generator principal

ideal problem (SG-PIP).
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Introduction
The SG-PIP

Let K be an algebraic number field. The SG-PIP is defined as follows:

I Given: A Z-basis of some principal fractional ideal a ⊆ K that has some
“short” generator g.

I Task: Recover some shortest generator of a.
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Introduction
Strategy

The folklore approach is to solve the SG-PIP in two steps:

1. I Recover some arbitrary generator of the ideal, which is known as the principal
ideal problem (PIP).

I Solvable in polynomial time on quantum computers for any number field due to
Biasse and Song.

2. I Transform this generator into some shortest generator.
I Solvable in polynomial time for cyclotomic fields Q(ξm) of conductor m = pα due

to Cramer, Ducas, Peikert, and Regev [CDPR16].

→ Our work: task 2 for cyclotomic fields Q(ζm) of conductor m = pαqβ .
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Preliminaries
Cyclotomic Fields

Let ζm = exp(2πi/m) ∈ C be a primitive m-th root of unity, i.e., ζm
m = 1.

I The m-th cyclotomic field Km = Q(ζm) ⊆ C.
Example:

3 · ζ2
3 + 1

2 · ζ2
3 + ζ3 − 8

∈ K3.

I The ring of integers Om of Km is given by Om = Z[ζm].
Example:

ζ5
7 + 6ζ3

7 + 2ζ7 + 5 ∈ Z[ζ7].

I The set of all units of Om is denoted by O×m .
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Preliminaries
Principal Ideals

I A principal fractional ideal of Km:

〈g〉 = g · Om = {g · z| z ∈ Om}

for some g ∈ Km.

I Fact: If 〈g〉 = 〈g′〉, then g = g′ · u for some u ∈ O×m
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Preliminaries
Logarithmic Embedding

Let n = ϕ(m) = 2s and m ≥ 3.

Complex embeddings of Km:

σ1,σ1, ...,σs,σs : Km → C, where

σi (ζm) = ζ j
m for some j ∈ Z×m .

The logarithmic embedding as

Log : K×m → Rs

α 7→
(
(log(|σ1(α)|), ..., log(|σs(α)|)

)
,

→ Log(O×m ) is a lattice in Rs of rank s − 1!
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Logarithmic Embedding
Short Generator

Let a = 〈g〉 ⊂ Km.

g′ ∈ Km is called a shortest generator of a, if

I 〈g′〉 = a and
I ||Log(g′)||2 = minf∈Km ,〈f〉=a ||Log(f )||2 = minu∈O×

m
||Log(g · u)||2.
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Algorithmic Approach
Idea

I Let g′ = gu be a shortest generator of 〈g〉 = a ⊂ Km for some u ∈ O×m .
I Hence Log(g′) = Log(g) + Log(u) and Log(g) ∈ Log(O×m ) + Log(g′).
I Since Log(g′) is short, this is a CVP problem.
I Solve CVP in the lattice Log(O×m ) (or in some small-index subgroup).

Log(u)

Log(g)

Log(g′)
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Algorithmic Approach
CVP

Algorithm: Round-off Algorithm

1 Input: B, t.
2 Output: Close(st) vector v ∈ L to t .
3 a← b(B∗)T · te
4 v← B · a
5 return (v, a)

Where B is a basis of the lattice Γ and B∗ denotes its dual basis.

On input t := v + e ∈ Rn for v ∈ L(B) and (small) error e ∈ Rn the algorithm outputs
v if 〈b∗j , e〉 ∈ [− 1

2 , 1
2 ).

→ Needs a sufficiently good basis (short dual vectors).
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Algorithmic Approach
CVP

v

t
(B∗)T

(B∗)T t

(B∗)T v

Figure: Round-off Algorithm
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Algorithmic Approach
Recovering Shortest Generator

What is left:

1. Construct a basis B of a sublattice L ⊂ Γ = Log(O×m ).

2. Show that the index [Γ : L] is small.

3. Show that ||b∗j ||2 is small enough to guarantee 〈b∗j , Log(g′)〉 ∈ [− 1
2 , 1

2 ).
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Algorithmic Approach
Subgroups of O×

m

We consider the following subgroups of O×m .

For j ∈ Z×m\{±1} let

bj :=
ζ j

m − 1
ζm − 1

∈ O×m

I For m = pα: Consider the subgroup Cm generated by the bj ’s.

I For m = pαqβ : Consider the subgroup Sm generated by the bj ’s and ±ζm.
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Index
The case m = pα as in [CDPR16]

Let m = pα.
Fact: the index of Cm ⊂ O×m is given by

h+
m =

[
O×m : Cm

]
,

where h+
m is the class number of K +

m = Q(ζm + ζm).

1. We need h+
m to be small.

2. Weber’s class number problem: conjectured that h+
2l = 1 for all l ∈ N.

3. Conjectured: for every prime p exists a constant cp such that h+
pl ≤ cp for all

l ∈ N.

→ In the prime-power case, the index is small enough.
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Index
The case m = pαqβ

I More complicated for m = pαqβ .
I Let Gm = Z×

m/{±1} and set

βm :=
∏

χ∈Ĝm
χ 6≡1

∏
p|m
p∈P

(1− χ(p)) .

I If m is not a prime-power:

[O×m : Sm] =

{
2h+

mβm if 2h+
mβm 6= 0

∞ otherwise

I Cohen-Lenstra heuristics and computations suggest h+
m is polynomial in m.

Evaluating βm leads to the new notion of generator prime pairs.
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Index if m = pαqβ

Generator Prime Pairs

Definition 1
Let α,β ∈ N and p, q ∈ P \ {2} be distinct. Then (p, q) is called an
(α,β)-generator prime pair (GPP) if:

i) I If q − 1 ≡ 0 mod 4: 〈p〉 = Z×
qβ

.
I If q − 1 6≡ 0 mod 4: 〈p〉 = Z×

qβ
or [Z×

qβ
: 〈p〉] = 2.

And
ii) I If p − 1 ≡ 0 mod 4: 〈q〉 = Z×

pβ
.

I If p − 1 6≡ 0 mod 4: 〈q〉 = Z×
pβ

or [Z×
pβ

: 〈q〉] = 2.

If (p, q) is an (α,β)-GPP for every α,β ∈ N, we call (p, q) a generator prime pair
(GPP).
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Index if m = pαqβ

Generator Prime Pairs

Some facts about GPPs:
I If (p, q) is an (α,β)-GPP and β ≥ 2, then (p, q) is an (α, l)-GPP for all l ∈ N.
I In particular, (p, q) is a GPP iff it is a (2, 2)-GPP.
I Experiments suggest that ≈ 36% of all odd prime pairs are GPPs.

p q p q p q p q p q p q p q
3 5 5 17 7 11 11 13 13 37 17 23 19 23
3 7 5 23 7 17 11 17 13 41 17 31 19 29
3 23 5 37 7 23 11 29 13 59 17 37 19 41
3 29 5 47 7 47 11 31 13 67 17 41 19 47

Figure: Generator prime pairs
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Index if m = pαqβ

Generator Prime Pairs

Figure: Generator prime pairs
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Index if m = pαqβ

The factor βm

Theorem 2
Let p, q be two distinct odd primes and m = pαqβ for some α,β ∈ N. Then

βm =
∏

χ∈Ĝm
χ6≡1

∏
t|m
t∈P

(1− χ(t)) 6= 0 iff (p, q) is an (α,β)-generator prime pair.

Theorem 3
If (p, q) is an (α,β)-generator prime pair and m = pαqβ for some α,β ∈ N, then

βm =
∏

χ∈Ĝm
χ 6≡1

∏
t|m
t∈P

(1− χ(t)) =
ϕ(m)

4
.
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Index if m = pαqβ

The factor βm

Figure: The factor βm for m = pαqβ with two odd primes p, q
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Norm Bound
m = pα as in [CDPR16]

Prime-power case studied by Cramer, Ducas, Peikert and Regev:

Theorem 4
If m = pα, then

||Log(bj )∗||22 ∈ O
(

log3 m
m

)
.

→ sufficiently short to solve CVP
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Norm Bound
m = pαqβ

More complicated for m = pαqβ .

We derived the following result:

Theorem 5
Let (p, q) be an (α,β)-generator prime pair, and m := pαqβ . Then

||b∗j ||22 ≤
15C
m

+ C2 log2(m) ·
(

15αβ
2m

+
55(α + β)

8m
+

5β
12pα

+
5α

12qβ

)
holds for some universal constant C > 0 (i.e., C is independent of m).

→ Sufficiently short under some conditions on α,β.
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Conclusion

I We extended the results of [CDPR16] to cyclotomic fields Q(ζm) of conductor
m = pαqβ .

I We introduced a new notion called generator prime pairs.
I We showed how to efficiently solve the SG-PIP on quantum computers for

cyclotomic fields of conductor m = pαqβ , if (p, q) is an (α,β)-GPP.
I Full version on eprint (2017/513).

Thank you!
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